Rigorous Study of Limits

Lecturer: Xue Deng

Symbol Description

1) \boldsymbol{E} (epsilon) Greek letter stands for (usually small) arbitrary positive number

2 $\boldsymbol{\delta}$ (delta) Greek letter stands for (usually small) arbitrary positive number
$3 \forall$ For any
4) ヨ Exist, there exists at least one
5) $|f(x)-L|<\varepsilon f(x)$ is within ε of $L, f(x)$ lies in the open interval $(L-\varepsilon, L+\varepsilon)$

6 . $|x-c|<\delta$ The interval $c-\delta<x<c+\delta$ including c (x is sufficiently close to c)
7) $0<|x-c|<\delta$ Requires that $x=c$ be excluded (x is sufficiently close to but different from c)

Symbol Description

"neighborhood" Let a and δ be real numbers and $\delta>0$.
Set $\{\boldsymbol{x}||\boldsymbol{x}-\boldsymbol{a}|<\boldsymbol{\delta}\}$ be the δ-neighborhood of point a, which is denoted as

$$
U(a, \delta)=\{\boldsymbol{x} \mid a-\boldsymbol{\delta}<\boldsymbol{x}<\boldsymbol{a}+\boldsymbol{\delta}\}
$$

a is regarded as center; δ is regarded as radius

Symbol Description

(1) $U(a, \delta)=\{\boldsymbol{x} \mid \boldsymbol{a}-\boldsymbol{\delta}<\boldsymbol{x}<\boldsymbol{a}+\boldsymbol{\delta}\}$.

Sometimes $U(a, \delta)$ is written as $\boldsymbol{U}(\boldsymbol{a})$.
(2) $\stackrel{\circ}{\boldsymbol{U}}(a, \boldsymbol{\delta})=\{\boldsymbol{x}|0<|\boldsymbol{x}-\boldsymbol{a}|<\boldsymbol{\delta}\}$.

$$
x \neq a
$$

(3) $\left\{\begin{array}{l}\text { the open interval }(\boldsymbol{a}-\boldsymbol{\delta}, \boldsymbol{a}) \text { the left neighborhood of } \delta \\ \text { the open interval }(\boldsymbol{a}, \boldsymbol{a}+\boldsymbol{\delta}) \text { the right neighborhood of } \delta\end{array}\right.$

Problem Introduction

In mathematical language, how to express:

$$
x \rightarrow x_{0}, \quad f(x) \rightarrow L
$$

$\forall \varepsilon>0, \quad|f(x)-L|<\varepsilon \quad f(x)$ is as close as we like to $L ;$
$\exists \delta>0, \quad 0<\left|x-x_{0}\right|<\delta x$ is sufficiently close to but different from x_{0}.

$$
x \neq x_{0}
$$

Definition Precise Meaning of Limit $(\varepsilon-\delta)$

If $\forall \varepsilon>0, \exists \delta>0$, such that when $0<\left|x-x_{0}\right|<\delta$, we have

$$
|f(x)-L|<\varepsilon
$$

Namely, $\lim _{x \rightarrow x_{0}} f(x)=L, \quad$ or $\quad f(x) \rightarrow L\left(x \rightarrow x_{0}\right)$.

That is, $\quad 0<\left|x-x_{0}\right|<\delta \Rightarrow|f(x)-L|<\varepsilon$
$\varepsilon>0$: no matter how small, there is a correspongding $\delta>0$.

Definition Precise Meaning of Limit $(\varepsilon-\delta)$

Geometrical meaning of $\lim _{x \rightarrow x_{0}} f(x)=L$

$\forall \varepsilon>0, \exists \delta>0$, when $0<\left|x-x_{0}\right|<\delta$, we have $|f(x)-L|<\varepsilon$
x_{0} satisfying $0<\left|x-x_{0}\right|<\delta$,
$L-\varepsilon<y=f(x)<L+\varepsilon$

Definition left-hand and right-hand limits

Left-hand limit $\forall \varepsilon>0, \exists \delta>0$, such that when $x_{0}-\delta<x<x_{0}$

$$
\text { we have }|f(x)-L|<\varepsilon
$$

write it as $\lim _{x \rightarrow x_{0}^{-}} f(x)=L$ or $f\left(x_{0}^{-}\right)=L$.
Right-hand limit $\forall \varepsilon>0, \exists \delta>0$, such that when $x_{0}<x<x_{0}+\delta$

$$
\text { we have }|f(x)-L|<\varepsilon
$$

write it as $\lim _{x \rightarrow x_{0}^{+}} f(x)=L$ or $f\left(x_{0}^{+}\right)=L$.

Rigorous Study of Limits

E $\left\{x\left|0<\left|x-x_{0}\right|<\delta\right\}\right.$
$=\left\{x \mid 0<x-x_{0}<\delta\right\} \cup\left\{x \mid-\delta<x-x_{0}<0\right\}$
$\lim _{x \rightarrow x_{0}} f(x)=L<$ (1)eft-hand limit and right-hand limit exist and
(2) the two limits are equal, that is

$$
\lim _{x \rightarrow x_{0}^{-}} f(x)=L=\lim _{x \rightarrow x_{0}^{+}} f(x)
$$

Example 1

Prove $\lim _{x \rightarrow x_{0}} C=C,(C$ is constant $)$.

- $\forall \varepsilon>0$, for any $\boldsymbol{\delta}>0$, when $0<\left|x-x_{0}\right|<\delta$,

$$
|f(x)-L|=|C-C|=0<\varepsilon
$$

$\therefore \lim _{x \rightarrow x_{0}} C=C$.

Example 2

Prove $\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$.
$f(x)$ is not defined at $x=1$
$\because|f(x)-L|=\left|\frac{x^{2}-1}{x-1}-2\right|=|x-1| \forall \varepsilon>0$,
In order to $|f(x)-L|<\varepsilon$, need to take $\delta=\varepsilon$,
when $0<|x-1|<\delta$, we have $\left|\frac{x^{2}-1}{x-1}-2\right|<\delta=\varepsilon$,
$\therefore \lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}=2$.

Example 3

Prove $f(x)=\left\{\begin{array}{cc}\sqrt{x} & x<1 \\ \sin x & x \geq 1\end{array}\right.$ has no limit when $x \rightarrow 1$.
$\lim _{x \rightarrow 1^{-}} f(x)=\lim _{x \rightarrow 1^{-}} \sqrt{x}=1$
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{+}} \sin x=\sin 1$
$\lim _{x \rightarrow 1^{-}} f(x) \neq \lim _{x \rightarrow 1^{+}} f(x)$
So, $f(x)$ has no limit when $x \rightarrow 1$.

Example 4

Determine $\lim _{x \rightarrow 0} \frac{|x|}{x}$ exists or not.

$\lim _{x \rightarrow 0^{-}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{-}} \frac{-x}{x}=\lim _{x \rightarrow 0^{-}}(-1)=-1$
$\lim _{x \rightarrow 0^{+}} \frac{|x|}{x}=\lim _{x \rightarrow 0^{+}} \frac{x}{x}=\lim _{x \rightarrow 0^{+}} 1=1$
$\therefore \lim _{x \rightarrow 0^{-}} \frac{|x|}{x} \neq \lim _{x \rightarrow 0^{+}} \frac{|x|}{x}$,

So the limit does not exist.

Summary

Precise Meaning of Limit $(\varepsilon-\delta)$

If $\forall \varepsilon>0, \exists \delta>0$, such that when $0<\left|x-x_{0}\right|<\delta$, we have

$$
|f(x)-L|<\varepsilon
$$

Questions and Answers

Q1: Prove $\lim _{x \rightarrow x_{0}} x=x_{0}$.
$\because|f(x)-L|=\left|x-x_{0}\right|, \forall \varepsilon>0$, take $\delta=\varepsilon$,
when $0<\left|x-x_{0}\right|<\delta=\varepsilon$,

$$
|f(x)-L|=\left|x-x_{0}\right|<\varepsilon,
$$

$\therefore \lim _{x \rightarrow x_{0}} x=x_{0}$.

Questions and Answers

Q2: Prove : when $x_{0}>0, \lim _{x \rightarrow x_{0}} \sqrt{x}=\sqrt{x_{0}}$.
$\left|x-x_{0}\right| \leq x_{0}$ makes that $x \geq 0$
$\because|f(x)-L|=\left|\sqrt{x}-\sqrt{x_{0}}\right|=\left|\frac{x-x_{0}}{\sqrt{x}+\sqrt{x_{0}}}\right| \leq \frac{\left|x-x_{0}\right|}{\sqrt{x_{0}}}<\varepsilon$
$\forall \varepsilon>0$, in order to $|f(x)-L|<\varepsilon$
Only need to $\left|x-x_{0}\right|<\sqrt{x_{0}} \varepsilon$ and $x \geq 0$
Take $\delta=\min \left\{x_{0}, \sqrt{x_{0}} \varepsilon\right\}$ when $0<\left|x-x_{0}\right|<\delta$,
we have $\left|\sqrt{x}-\sqrt{x_{0}}\right|<\varepsilon, \therefore \lim _{x \rightarrow x_{0}} \sqrt{x}=\sqrt{x_{0}}$.

Questions and Answers

Q3: Prove $\lim _{x \rightarrow 4}(3 x-7)=5$.
Analysis Prove that $\lim _{x \rightarrow 4}(3 x-7)=5$.

$$
\begin{aligned}
& 0<|x-4|<\delta \Rightarrow|(3 x-7)-5|<\varepsilon . \\
& \begin{aligned}
|(3 x-7)-5|<\varepsilon & \Leftrightarrow|3 x-12|<\varepsilon \\
& \Leftrightarrow 3|x-4|<\varepsilon \\
& \Leftrightarrow|x-4|<\frac{\varepsilon}{3} .
\end{aligned}
\end{aligned}
$$

How to choose $\delta: \delta=\frac{\varepsilon}{3}$.

Questions and Answers

Q3: Prove $\lim _{x \rightarrow 4}(3 x-7)=5$.

Proof: (1) $\forall \varepsilon>0$, choose $\delta=\frac{\varepsilon}{3}$.
(2) $0<|x-4|<\delta$ implies that
(3) $|(3 x-7)-5|=|3 x-12|=3|x-4|<3 \cdot \delta=3 \cdot \frac{\varepsilon}{3}=\varepsilon$.

So we have $|(3 x-7)-5|<\varepsilon$.
\int Limits

