

Rigorous Study of Limits

Lecturer: Xue Deng

Symbol Description

- (epsilon) Greek letter stands for (usually small) arbitrary positive number
- δ (delta) Greek letter stands for (usually small) arbitrary positive number
- 3 ∀ For any
- $4 \quad \exists \quad \text{Exist, there exists at least one}$
- 5 $|f(x) L| < \varepsilon$ f(x) is within ε of L, f(x) lies in the open interval $(L \varepsilon, L + \varepsilon)$
- 6 $|x-c| < \delta$ The interval $c \delta < x < c + \delta$ including c (x is sufficiently close to c)

7 $0 < |x - c| < \delta$ Requires that x = c be excluded (x is sufficiently close to but different from c)

Symbol Description

"neighborhood" Let *a* and δ be real numbers and $\delta > 0$. Set $\{x \mid x - a \mid < \delta\}$ be the δ -neighborhood of point *a*, which is denoted as $U(a, \delta) = \{x \mid a - \delta < x < a + \delta\}.$

a is regarded as center; δ is regarded as radius

Symbol Description

1
$$U(a, \delta) = \{x \mid a - \delta < x < a + \delta\}.$$

Sometimes $U(a, \delta)$ is written as U(a).

$$\overset{2}{U}(a,\delta) = \{ x \mid 0 < |x-a| < \delta \}.$$

3 {the open interval $(a - \delta, a)$ the left neighborhood of δ the open interval $(a, a + \delta)$ the right neighborhood of δ

Problem Introduction

In mathematical language, how to express: $x \rightarrow x_0, f(x) \rightarrow L$

$\forall \varepsilon > 0, \quad \left| f(x) - L \right| < \varepsilon \quad f(x) \text{ is as close as we like to } L;$ $\exists \delta > 0, \quad \mathbf{0} < \left| x - x_0 \right| < \delta \quad x \text{ is sufficiently close to but different from } x_0.$

Definition Precise Meaning of Limit $(\varepsilon - \delta)$

If $\forall \varepsilon > 0$, $\exists \delta > 0$, such that when $0 < |x - x_0| < \delta$, we have $|f(x) - L| < \varepsilon$

Namely,
$$\lim_{x \to x_0} f(x) = L$$
, or $f(x) \to L (x \to x_0)$.

That is, $0 < |x - x_0| < \delta \Rightarrow |f(x) - L| < \varepsilon$

 $\varepsilon > 0$: no matter how small, there is a corresponding $\delta > 0$.

Definition Precise Meaning of Limit $(\varepsilon - \delta)$

Geometrical meaning of
$$\lim_{x \to x_0} f(x) = L$$

$$\forall \varepsilon > 0, \exists \delta > 0, \text{ when } 0 < |x - x_0| < \delta, \text{ we have } |f(x) - L| < \varepsilon$$

$$x_0$$
 satisfying $0 < |x - x_0| < \delta$,
 $L - \varepsilon < v = f(x) < L + \varepsilon$

The function values of *x* lie in the domain.

Definition left-hand and right-hand limits

Left-hand limit $\forall \varepsilon > 0, \exists \delta > 0$, such that when $x_0 - \delta < x < x_0$ we have $|f(x) - L| < \varepsilon$. write it as $\lim_{x \to x_0^-} f(x) = L$ or $f(x_0^-) = L$.

Right-hand limit $\forall \varepsilon > 0, \exists \delta > 0$, such that when $x_0 < x < x_0 + \delta$ we have $|f(x) - L| < \varepsilon$.

write it as
$$\lim_{x \to x_0^+} f(x) = L$$
 or $f(x_0^+) = L$.

Rigorous Study of Limits

$$\begin{aligned} & \sum_{x \in V} \{x \mid 0 < |x - x_0| < \delta\} \\ &= \{x \mid 0 < x - x_0 < \delta\} \cup \{x \mid -\delta < x - x_0 < 0\} \end{aligned}$$

 $\lim_{x \to x_0} f(x) = L$ (1) Left-hand limit and right-hand limit exist and (2) the two limits are equal, that is $\lim_{x \to x_0^-} f(x) = L = \lim_{x \to x_0^+} f(x)$

Prove
$$\lim_{x\to x_0} C = C$$
, (*C* is constant).

$$\forall \varepsilon > 0, \text{ for any } \delta > 0, \text{ when } 0 < |x - x_0| < \delta,$$
$$|f(x) - L| = |C - C| = 0 < \varepsilon,$$

$$\therefore \lim_{x \to x_0} C = C.$$

Prove
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

$$f(x) \text{ is not defined at } x = 1$$

$$\therefore \left[f(x) - L \right] = \left| \frac{x^2 - 1}{x - 1} - 2 \right| = \left| x - 1 \right| \forall \varepsilon > 0,$$

In order to $|f(x) - L| < \varepsilon$, need to take $\delta = \varepsilon$,
when $0 < |x - 1| < \delta$, we have $\left| \frac{x^2 - 1}{x - 1} - 2 \right| < \delta = \varepsilon,$

$$\therefore \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2.$$

Prove
$$f(x) = \begin{cases} \sqrt{x} & x < 1 \\ \sin x & x \ge 1 \end{cases}$$
 has no limit when $x \to 1$.

$$\sum_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \sqrt{x} = 1 \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} \sin x = \sin 1 \lim_{x \to 1^{-}} f(x) \neq \lim_{x \to 1^{+}} f(x)$$

So, f(x) has no limit when $x \rightarrow 1$.

Determine
$$\lim_{x \to 0} \frac{|x|}{x}$$
 exists or not.

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = \lim_{x \to 0^{-}} \frac{-x}{x} = \lim_{x \to 0^{-}} (-1) = -1$$
$$\lim_{x \to 0^{+}} \frac{|x|}{x} = \lim_{x \to 0^{+}} \frac{x}{x} = \lim_{x \to 0^{+}} 1 = 1$$

$$\therefore \lim_{x \to 0^-} \frac{|x|}{x} \neq \lim_{x \to 0^+} \frac{|x|}{x},$$

So the limit does not exist.

Precise Meaning of Limit
$$(\varepsilon - \delta)$$

If $\forall \varepsilon > 0$, $\exists \delta > 0$, such that when $0 < |x - x_0| < \delta$, we have $|f(x) - L| < \varepsilon$

Q1: Prove
$$\lim_{x \to x_0} x = x_0$$
.

$$: |f(x) - L| = |x - x_0|, \forall \varepsilon > 0, \text{ take } \delta = \varepsilon,$$

when
$$0 < |x - x_0| < \delta = \varepsilon$$
,

$$|f(x)-L|=|x-x_0|<\mathcal{E},$$

$$\therefore \lim_{x \to x_0} x = x_0.$$

Q2: Prove : when
$$x_0 > 0$$
, $\lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

$$|x - x_0| \le x_0 \text{ makes that } x \ge 0$$

$$\because |f(x) - L| = |\sqrt{x} - \sqrt{x_0}| = \left|\frac{x - x_0}{\sqrt{x} + \sqrt{x_0}}\right| \le \frac{|x - x_0|}{\sqrt{x_0}} < \varepsilon$$

$$\forall \varepsilon > 0, \text{ in order to } |f(x) - L| < \varepsilon$$
Only need to $|x - x_0| < \sqrt{x_0}\varepsilon$ and $x \ge 0$
Take $\delta = \min\{x_0, \sqrt{x_0}\varepsilon\}$ when $0 < |x - x_0| < \delta$,
we have $|\sqrt{x} - \sqrt{x_0}| < \varepsilon, \therefore \lim_{x \to x_0} \sqrt{x} = \sqrt{x_0}$.

Q3: Prove
$$\lim_{x \to 4} (3x - 7) = 5$$
.
Analysis Prove that $\lim_{x \to 4} (3x - 7) = 5$.
 $0 < |x - 4| < \delta \Rightarrow |(3x - 7) - 5| < \varepsilon$.
 $|(3x - 7) - 5| < \varepsilon \Leftrightarrow |3x - 12| < \varepsilon$
 $\Leftrightarrow 3|x - 4| < \varepsilon$
 $\Leftrightarrow |x - 4| < \frac{\varepsilon}{3}$.
How to choose δ : $\delta = \frac{\varepsilon}{3}$.

Q3: Prove
$$\lim_{x \to 4} (3x - 7) = 5$$
.

Proof: (1)
$$\forall \varepsilon > 0$$
, choose $\delta = \frac{\varepsilon}{3}$.
(2) $0 < |x - 4| < \delta$ implies that
(3) $|(3x - 7) - 5| = |3x - 12| = 3|x - 4| < 3 \cdot \delta = 3 \cdot \frac{\varepsilon}{3} = \varepsilon$.
So we have $|(3x - 7) - 5| < \varepsilon$.

Limits

•••••

• • • • • • • • • • •

•••••

•••••

• • • • • • • • • • • •

• • • • • • • • • • • •

• • • • • • • • • • • •

.

• • • • • • • • • • •

.

• • • • • • • • • • • •